S(n+1)=3Sn+n^2+2
Sn=3S(n-1)+(n-1)^2+2
所以
a(n+1)=3an+2n-1
bn=an+n
b(n+1)=a(n+1)+(n+1)
所以
b(n+1)/bn=[a(n+1)+(n+1)]/(an+n)
=[3an+2n-1+n+1]/(an+n)
=3
所以是等比数列
S(n+1)=3Sn+n^2+2
Sn=3S(n-1)+(n-1)^2+2
所以
a(n+1)=3an+2n-1
bn=an+n
b(n+1)=a(n+1)+(n+1)
所以
b(n+1)/bn=[a(n+1)+(n+1)]/(an+n)
=[3an+2n-1+n+1]/(an+n)
=3
所以是等比数列