圆C:x^2+y^2-2tx-2 t^2 y+4t=0
0
0

2个回答

  • x^2+y^2-2tx-2 t^2 y+4t

    =(x^2-2tx)+(y^2-2 t^2 y)+4t

    =(x^2-2tx+t^2)+(y^2-2 t^2 y+t^4)-(t^4+t^2-4t)

    =(x-t)^2+(y-t^2)^2-[(t^4+t^2+4t^2)-(4t^2+4t)]

    =(x-t)^2+(y-t^2)^2-[(t^2+t)^2-4t(t+1)]

    =(x-t)^2+(y-t^2)^2-[t^2(t+1)^2-4t(t+1)]

    =(x-t)^2+(y-t^2)^2-[t(t+1)-/2]^2+1

    因为x^2+y^2-2tx-2 t^2 y+4t=0

    所以(x-t)^2+(y-t^2)^2-[t(t+1)-/2]^2+1=0

    而(x-t)^2和(y-t^2)^2均不小于0,

    所以(x-t)^2=(y-t^2)^2=0且-[t(t+1)-/2]^2+1=0(*)

    所以圆C:x^2+y^2-2tx-2 t^2 y+4t=0必过点(t,t^2)

    而t的值解(*)式可得

更多回答