lim(x→0) [∫(0→x²) sin√t dt]/x^a
= lim(x→0) (2xsinx)/[ax^(a - 1)]
= lim(x→0) (2x²)/[ax^(a - 1)]
2 = a - 1 ==> a = 3
这是单边极限:
当x→0⁻,极限→- 2/3
当x→0⁺,极限→2/3
lim(x→0) [∫(0→x²) sin√t dt]/x^a
= lim(x→0) (2xsinx)/[ax^(a - 1)]
= lim(x→0) (2x²)/[ax^(a - 1)]
2 = a - 1 ==> a = 3
这是单边极限:
当x→0⁻,极限→- 2/3
当x→0⁺,极限→2/3