fx’=y²+2xz,fx‘z’=2x,因此fx‘z’(0,1,2)=0
设f(x,y,z)=xy^2+yz^2+zx^2,则fx'z'(0,1,2)=
1个回答
相关问题
-
化简x^2-yz/[x^2-(y+z)x+yz]+y^2-zx/[y^2-(z+x)y+zx]+z^2-xy/[z^2-
-
y^2+yz+z^2=a^2,z^2+zx+x^2=b^2,x^2+xy+y^2=c^2,yz+zx+xy=0.证明:(
-
设x,y,z>0,x^2+y^2+z^2=1,求xy/z+yz/x+zx/y的最小值.
-
已知x-y-3z=0,x+y-z=0,则(x^2 + y^2 - 3z^2 - xy + yz - zx)/(x^2 -
-
若3/x=2/y=5/z则xy+yz+zx/x^2+y^2+z^2=?
-
3/x=5/y=7/z,则xy+yz+zx/x^2-2y^2+3z^2=
-
已知xy/x+y=1.yz/y+z=2.zx/z+x=3.则x=?
-
已知:3/x+y=4/y+z=5/z+x,则x2/(xy+yz+zx)+y2+z2=?
-
设x,y,z为正实数,求证 √[(y^2+yz+z^2)(z^2+zx+x^2)]+√[(z^2+zx+x^2)(x^2
-
已知:x2+y2+z2=xy+yz+zx,求证:x=y=z.