sin10π-√2cos(-19π/4)+tan(-13π/3)=
1个回答
sin10π=0
cos(-19π/4)=cos5π/4= -√2/2
tan(-13π/3)=tan(2π/3)= -√3
所以
原式=0 +√2/2 -√3=√2/2 -√3
相关问题
sin-3π/4= cos11π/6= tan13π/4= sin7π/2= cos-3π/2= sin10π/3=
sin(-21π/4) cos(-20π/3) tan(-19π/6)=
求值:2cosπ/2-tanπ/4+3/4tan²π/6-sinπ/6+cos²π/6+sin3π/
求值sin13 π/4+cos(-3π/4)+tan7π/4
sin(-33π/4)+cos5π-tan10π/3=?
tan(13π/3)+sin(-5π/2)+cos(-23π/6)
2sin ^2(19π/4)+tan^2(8π/3)*tan(-7π/4)
sin2π/3· cos3π/2· tanπ/4=
求值sin7π/3cos(-23π/6)+tan(-11π/4)cos13π/3
sin4/3π乘以cos19/6π乘以tan21/4π