1、f((x+y)/2)=(1-a)f(x)+af(y)
f((1-1)/2)=(1-a)f(1)+af(-1),即
(1-a)+af(-1)=0.(1)
f((-1+1)/2)=(1-a)f(-1)+af(1),即
(1-a)f(-1)+a=0.(2)
由(1)(2)可知
f(-1)=(a-1)/a=a/(a-1)
a=1/2,f(-1)=-1
2、当a=1/2时
f((x+y)/2)=[f(x)+f(y)]/2,即
f[(x+0)/2]=[f(x)+f(0)]/2,即
f(x)=2f(x/2)
所以f(x)+f(y)]=2f[(x+y)/2]=f(x+y)
3、f(1/3+2/3)=f(1/3)+f(2/3),即
f(1/3)+2f(1/3)=f(1)=1
f(1/3)=1/3