f(x)=cosx(2cosx+1)-(cos2x-sinx+1)
=2(cosx)^2+cosx-cos2x+sinx-1
=2(cosx)^2-1-cos2x+cosx+sinx
=cos2x-cos2x+cosx+sinx
=sinx+cosx
=√2[√2sinx/2+√2cosx/2]
=√2sin(x+π/4)
x+π/4=2kπ+π/2
x=2kπ+π/4时,
y取到最大,y=√2
,f(X)的最大值及取得最大值时的x的取值集合{x|x=2kπ+π/4}
f(x)=cosx(2cosx+1)-(cos2x-sinx+1)
=2(cosx)^2+cosx-cos2x+sinx-1
=2(cosx)^2-1-cos2x+cosx+sinx
=cos2x-cos2x+cosx+sinx
=sinx+cosx
=√2[√2sinx/2+√2cosx/2]
=√2sin(x+π/4)
x+π/4=2kπ+π/2
x=2kπ+π/4时,
y取到最大,y=√2
,f(X)的最大值及取得最大值时的x的取值集合{x|x=2kπ+π/4}