f(x)=(1+cos2x)/2+(1/2)sin2x+3/2
=(1/2)sin2x+(1/2)cos2x+2
=(√2/2)sin(2x+π/4)+2
(1)T=2π/2=π,f(π/8)=(√2/2)+2
(2)2kπ-π/2≤2x+π/4≤2kπ+π/2
得:kπ-3π/8≤x≤kπ+π/8
∴递增区间为:[kπ-3π/8,kπ+π/8],k∈Z
f(x)=(1+cos2x)/2+(1/2)sin2x+3/2
=(1/2)sin2x+(1/2)cos2x+2
=(√2/2)sin(2x+π/4)+2
(1)T=2π/2=π,f(π/8)=(√2/2)+2
(2)2kπ-π/2≤2x+π/4≤2kπ+π/2
得:kπ-3π/8≤x≤kπ+π/8
∴递增区间为:[kπ-3π/8,kπ+π/8],k∈Z