1.[(3x+1)^2][(3x-1)^2]
=[(3x+1)(3x-1)]^2
=[9x^2-1]^2
=81x^4-18x^2+1
2.(x+1)[(x^2)+1][(x^4)+1](x-1)
=(x+1)(x-1)[(x^2)+1][(x^4)+1]
=(x^2-1)[(x^2)+1][(x^4)+1]
=[(x^4)-1][(x^4)+1]
=[(x^8)-1]
1.[(3x+1)^2][(3x-1)^2]
=[(3x+1)(3x-1)]^2
=[9x^2-1]^2
=81x^4-18x^2+1
2.(x+1)[(x^2)+1][(x^4)+1](x-1)
=(x+1)(x-1)[(x^2)+1][(x^4)+1]
=(x^2-1)[(x^2)+1][(x^4)+1]
=[(x^4)-1][(x^4)+1]
=[(x^8)-1]