1.a(n+2) = - 1/(a(n+1)) = -1/(-1/(a(n))) = a(n)
2.由此推断a20=a18=...=a4 = 4
3.a1+a2+a3+a4+a5+a6+a7 = a1+a2+a1+a2+a1+a2+a1 = 4*a1+3*a2
a2=-1/a1=-1
a1+a2+a3+a4+a5+a6+a7 = 4-3=1
1.a(n+2) = - 1/(a(n+1)) = -1/(-1/(a(n))) = a(n)
2.由此推断a20=a18=...=a4 = 4
3.a1+a2+a3+a4+a5+a6+a7 = a1+a2+a1+a2+a1+a2+a1 = 4*a1+3*a2
a2=-1/a1=-1
a1+a2+a3+a4+a5+a6+a7 = 4-3=1