解题思路:(1)根据二次函数解析式,所写结论与m、n值无关即可,例如抛物线的对称轴;
(2)把函数解析式整理成顶点式形式,然后根据对称轴与AB的长度确定出点A、B到对称轴的距离,从而得解;
(3)先求出点B′、C的坐标,然后判断出B′O>BO,可得CB′≠CB,再分CB′=CB与BB′=B′C两种情况利用勾股定理列式进行计算即可得解.
(1)抛物线的对称轴为x=-[m
2•(−m)=
1/2](答案不唯一);
(2)抛物线为y=-mx2+mx+n=-m(x2-x+[1/4])+n+[1/4]=-m(x-[1/2])2+n+[1/4],
所以,对称轴为x=[1/2],
∵AB=5,
∴点A、点B到对称轴的距离为[5/2],
∴B(3,0),A(-2,0);
(3)存在△BCB′为等腰三角形的情形.
由已知得B′(-7,0),C(0,n)且C为y轴上的点,B′O>BO,
则不可能有CB′=CB的情况,因此存在下面两种情况:
①若BB′=BC,则有10=
32+n2,则有n=±
91;
②若BB′=B′C,则有10=
n2+72,则有n=±
51;
所以,当n值为±
91或±
点评:
本题考点: 二次函数综合题.
考点点评: 本题是二次函数综合题型,主要考查了二次函数的性质,二次函数的对称性,等腰三角形的性质,(1)关键在于所写结论与m、n值无关,(3)要根据等腰三角形腰长的不同分情况讨论.