如图▱ABCD中,AC、BD交于O点,点E、F分别是AO、CO的中点,试判断线段BE、DF的关系并证明你的结论.

1个回答

  • 解题思路:根据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF,BE∥DF.

    由题意得:BE=DF,BE∥DF.理由如下:

    ∵ABCD是平行四边形,

    ∴OA=OC,OB=OD,

    ∵E,F分别是OA,OC的中点,

    ∴OE=OF,

    ∴BFDE是平行四边形,

    ∴BE=DF,BE∥DF.

    点评:

    本题考点: 平行四边形的性质;全等三角形的判定与性质.

    考点点评: 本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.