因为cosB=(a^2+c^2-b^2)/2ac=cos[π-(A+C)]=-cos(A+C)
而(a^2+c^2-b^2)/ac=cos(A+C)/(sinAcosA)
所以sinAcosA=sin2A /2=1/2
即sin2A=1
所以A=45度或90度(舍去) (因为斜三角形ABC)
因为cosB=(a^2+c^2-b^2)/2ac=cos[π-(A+C)]=-cos(A+C)
而(a^2+c^2-b^2)/ac=cos(A+C)/(sinAcosA)
所以sinAcosA=sin2A /2=1/2
即sin2A=1
所以A=45度或90度(舍去) (因为斜三角形ABC)