分析:(1)设O是等腰直角三角形ABD斜边BD的中点,通过正三角形,以及计算证明AO⊥CO,从而证明AO⊥平面BCD;
(2)利用三面角公式直接求异面直线AB与CD所成角的大小的余弦,然后求出角的大小;
(3)利用射影面的面积与被射影面的面积的比,求二面角O-AC-D的大小.
(1)设O是等腰直角三角形ABD斜边BD的中点,
所以有AO⊥BD,可求得AO=1,CO= √3,又有AC=2
所以∠AEC=90°,即AO⊥CO
BD,CO是平面BCD内两条相交直线,故有AO⊥平面BCD.
(2)由(1)可知BD⊥面AOC,
所以面BCD⊥面AOC,AO=1,CO= √3,AC=2
A点在BCD面内的投影为O,
cos<AB,CD>=cos∠ABD•cos∠BDC= √2/2×12=√ 2/4
异面直线AB与CD所成角的大小:arccos √2/4.