1.见图
∵AE=2√2 ∠BAC=∠ABD=∠ACE=45°
∴AC=4
∠AHB=90°
(证明略)
2.当AG>AH时(其中AH=3)
∵AF=xAG=2x
∴AM=√2x
∵△AMN∽△ABD
∴MN/BD=AM/AB
∵MN=4x/3
∴S1=AF*MN/2=2x^2/3
∵△CRQ∽△CBD
∴RQ/BD=CG/CH
RQ=(AC-AG)BD/(AC-AH)=4(4-2x)
∵S2=AH*BD/2+(RQ+BD)×(AG-AH)/2
=6+(10-4x)(2x-3)
=32x-8x^2-24
∴S2=3S1
32x-8x^2-24=3*(2x^2/3)
(10X-12)(x-2)=0
x1=1.2 (不合题意,舍去)
x2=2
答:当S2=3S1时,x=2秒.
3.
当AG≤AH时,S2=4*S1,m=4
当AG=AC时,S2=3*S1,m=3
答:m的取值范围是3≤m≤4.