求微积方程.y'=e^(x+y).参考答案是.e^x+e^(-y)+c=0怎么解,
1个回答
y'=dy/dx=e^(x+y)=e^x*e^y
dy/e^y=e^xdx
e^(-y)dy=e^xdx
-de^(-y)=de^x
则
-e^(-y)=e^x+C
则
e^x+e^(-y)+C=0
相关问题
求微商方程通解:①y'=y(1-x)/x ②e^2x*ydy-(y+1)dx=0 ③e^-y*(1+y')=1
y'-e^x-y+e^x=0的通解怎么求
求y''(1+e^x)+y'=0的通解,是y=C1(x-e^-x)+C2,
(e^(x+y)-e^x)dx+.(e^(x+y)-e^y)dy=0微分方程求通解
求方程的特解,e^y+C1=(x+C2)^2是方程y''+(y')^2=2e^(-y)的通解
设y=y(x)是由方程e^x-e^y=sin(xy)所确定,求y',y'|x=0
设方程e^y+xy=e确定了函数y=y(x),求y'|x=0
函数y=y(x)由方程e^x - e^y - xy =0 确定, 求dy/dx .
求微分方程dy/dx+y=e^-x的通解,答案是y=(x+c)e^-x求过程,用常数变易法.
求方程y“+y'-2y=e^x的通解