(1)∵DE∥AC,DF∥AB,
∴△BDE∽△BCA∽△DCF,
记S△BDE=S1,S△DCF=S2,
∵SAEFD=25S,
∴S1+S2=S-25S=35S.①
S1S=BDBC,S2S=CDBC,
于是S1S+S2S=BD+CDBC=1,即S1+S2=S,
两边平方得S=S1+S2+2S1S2,
故2S1S2=SAEFD=25S,即S1S2=125S2.②
由①、②解得S1=3±
510S,即S1S=3±
510.
而S1S=(
BDBC)2,即3±
510=(
BD5)2,解得BD=30±10
52=(5±
5)22=5±
52.
(2)由G是△ABC的重心,DF过点G,且DF∥AB,可得CDCB=23,则DF=23AB.
由DE∥AC,CDCB=23,得DE=13AC,
∵AC=2AB,∴ACAB=2,DFED=2AB2AB=2,
得DFDE=ACAB,即DFAC=DEAB,
又∠EDF=∠A,故△DEF∽△ABC,
得EFBC=DEAB,所以EF=5
23.