如图,点D在△ABC的边BC上,过点D作AC的平行线DE交AB于E,作AB的平行线AE交AC于F

1个回答

  • (1)∵DE∥AC,DF∥AB,

    ∴△BDE∽△BCA∽△DCF,

    记S△BDE=S1,S△DCF=S2,

    ∵SAEFD=25S,

    ∴S1+S2=S-25S=35S.①

    S1S=BDBC,S2S=CDBC,

    于是S1S+S2S=BD+CDBC=1,即S1+S2=S,

    两边平方得S=S1+S2+2S1S2,

    故2S1S2=SAEFD=25S,即S1S2=125S2.②

    由①、②解得S1=3±

    510S,即S1S=3±

    510.

    而S1S=(

    BDBC)2,即3±

    510=(

    BD5)2,解得BD=30±10

    52=(5±

    5)22=5±

    52.

    (2)由G是△ABC的重心,DF过点G,且DF∥AB,可得CDCB=23,则DF=23AB.

    由DE∥AC,CDCB=23,得DE=13AC,

    ∵AC=2AB,∴ACAB=2,DFED=2AB2AB=2,

    得DFDE=ACAB,即DFAC=DEAB,

    又∠EDF=∠A,故△DEF∽△ABC,

    得EFBC=DEAB,所以EF=5

    23.