以等腰三角形ABC的斜边AB为边,作菱形ABDE,使D.E.C三点在同一直线上,求证角CAE=1/2角BAE

1个回答

  • 作AF垂直CD于F,CG垂直AB于G连结CF

    因为四边形ABDE为菱形

    所以AE=AB(菱形的四条边相等)

    CD平行AB(菱形的对边平行)

    易得AF=CG(平行线间的距离处处相等)

    因为CG= AB的1/2(直角三角形斜边上的中线等于斜边的一半)

    所以AF= AE的1/2

    又因为 角AFC为90度

    所以角FEA=30度(在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30° )

    所以角BAE=30度

    因为角BAC=45度

    所以角CAE=15度

    所以角CAE=1/2角BAE

    证毕..