解题思路:(1)等量关系为:10辆A轿车的价钱+15辆B轿车的价钱=300万元;8辆A轿车的价钱+18辆B轿车的价钱=300万元;
(2)根据(1)中求出AB轿车的单价,然后根据关键语“用不超过400万元购进A、B两种型号轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元”列出不等式组,判断出不同的购车方案,进而求出不同方案的获利的多少.
(1)设A型号的轿车每辆为x万元,B型号的轿车每辆为y万元.
根据题意得
10x+15y=300
8x+18y=300
解得
x=15
y=10
答:A、B两种型号的轿车每辆分别为15万元、10万元;
(2)设购进A种型号轿车a辆,则购进B种型号轿车(30-a)辆.
根据题意得
15a+10(30−a)≤400
0.8a+0.5(30−a)≥20.4
解此不等式组得18≤a≤20.
∵a为整数,∴a=18,19,20.
∴有三种购车方案.
方案一:购进A型号轿车18辆,购进B型号轿车12辆;
方案二:购进A型号轿车19辆,购进B型号车辆11辆;
方案三:购进A型号轿车20辆,购进B型号轿车10辆.
汽车销售公司将这些轿车全部售出后:
方案一获利18×0.8+12×0.5=20.4(万元);
方案二获利19×0.8+11×0.5=20.7(万元);
方案三获利20×0.8+10×0.5=21(万元).
答:有三种购车方案,在这三种购车方案中,汽车销售公司将这些轿车全部售出后分别获利为20.4万元,20.7万元,21万元.
点评:
本题考点: 一元一次不等式组的应用;二元一次方程组的应用.
考点点评: 此题是典型的数学建模问题,要先将实际问题转化为列方程组和列不等式组解应用题.