1.求下列函数的最大,最小值:(1)y=(2/3)sinxcosx(2)y=根号[(1/4)-sinx](3)y=-2[

2个回答

  • (1)y=(2/3)sinxcosx=(1/3)sin2x,最大值1/3,最小值-1/3.

    (2)y=√[(1/4)-sinx],0≤ (1/4) -sinx≤(1/4)-(-1)=5/4,最大值√5/2,最小值0.

    (3)y=-2[sinx+(1/2)]²+1,0=|-1/2+1/2|≤ |sinx+(1/2)| ≤1+(1/2)=3/2,

    最大值-2(3/2)²+1=-7/2,最小值1.

    (4)y=[sinx-(5/4)]²+15/16,1/4=|1-(5/4)|≤ |sinx-(5/4)|≤|-1-(5/4)|=9/4,

    最大值(9/4)²+15/16=6,最小值(1/4)²+15/16=1.

    3.f(x)=sinx+(√3)cosx,(-π/2≤x≤π/2)

    f(x)=2(1/2 sinx+ √3/2 cosx)=2sin(x+π/3),

    -π/6≤x+π/3≤5π/6,-1/2≤sin(x+π/3)≤1,

    值域[-1,2]