用分部积分法.∫ln{x^1/2 + (1+x)^1/2}dx=xln{x^1/2 + (1+x)^1/2}-∫xdln{x^1/2 + (1+x)^1/2}
=xln{x^1/2 + (1+x)^1/2}-1/2∫x/√(x(x+1) dx=xln{x^1/2 + (1+x)^1/2}-1/2√(x(x+1)+1/4ln│x+1/2+√(x(x+1)│+C
用分部积分法.∫ln{x^1/2 + (1+x)^1/2}dx=xln{x^1/2 + (1+x)^1/2}-∫xdln{x^1/2 + (1+x)^1/2}
=xln{x^1/2 + (1+x)^1/2}-1/2∫x/√(x(x+1) dx=xln{x^1/2 + (1+x)^1/2}-1/2√(x(x+1)+1/4ln│x+1/2+√(x(x+1)│+C