1、∫[-∞--->+∞] 1/(x²+2x+2) dx
=∫[-∞--->+∞] 1/[(x+1)²+1] dx
=arctan(x+1) |[-∞--->+∞]
=π/2-(-π/2)
=π
2、∫ [1--->e] 1/[x√(1-ln²x)] dx
=∫ [1--->e] 1/√(1-ln²x) d(lnx)
=arcsin(lnx) |[1--->e]
=arcsin(lne)-arcsin(ln1)
=arcsin1-0
=π/2
1、∫[-∞--->+∞] 1/(x²+2x+2) dx
=∫[-∞--->+∞] 1/[(x+1)²+1] dx
=arctan(x+1) |[-∞--->+∞]
=π/2-(-π/2)
=π
2、∫ [1--->e] 1/[x√(1-ln²x)] dx
=∫ [1--->e] 1/√(1-ln²x) d(lnx)
=arcsin(lnx) |[1--->e]
=arcsin(lne)-arcsin(ln1)
=arcsin1-0
=π/2