设新数列为bn,则bn=a(2n)
那么新数列的前n项和为
Sn=b1+b2+b3+……+bn
=a2+a4+a6+……+a(2n)
=2×3+2×3³+2×3^5+……+2×3^(2n-1)
=2×[3+3³+3^5+3^(2n-1)]
=2×3×(1-9^n)/(1-9)
=3×(9^n-1)/4
答案:3×(9^n-1)/4
设新数列为bn,则bn=a(2n)
那么新数列的前n项和为
Sn=b1+b2+b3+……+bn
=a2+a4+a6+……+a(2n)
=2×3+2×3³+2×3^5+……+2×3^(2n-1)
=2×[3+3³+3^5+3^(2n-1)]
=2×3×(1-9^n)/(1-9)
=3×(9^n-1)/4
答案:3×(9^n-1)/4