x+y
=(x+y)(1/x+1/y)/16
=(1+y/x+x/y+1)/16
=(y/x+x/y+2)/16
≥[2√(y/x*x/y)+2]/16
=(2+2)/16
=1/4
当且仅当y/x=x/y时,等号成立
所以x+y的最小值为1/4