证明:四边形ABDC是圆内接四边形,则 AD*BC=AB*CD+AC*BD(托勒密定理)
在等边△ABC中,得 AB=AC=BC ∠BAC=60°则 AD=BD+CD ∠BDC=120°
在△BCD中,由余弦定理,得 BC^2=BD^2+CD^2-2BD*CD*cos120°=AB^2
所以,得 AD^2=(BD+CD)^2=BD^2+CD^2+2BD*CD=AB^2+BD*CD
证明:四边形ABDC是圆内接四边形,则 AD*BC=AB*CD+AC*BD(托勒密定理)
在等边△ABC中,得 AB=AC=BC ∠BAC=60°则 AD=BD+CD ∠BDC=120°
在△BCD中,由余弦定理,得 BC^2=BD^2+CD^2-2BD*CD*cos120°=AB^2
所以,得 AD^2=(BD+CD)^2=BD^2+CD^2+2BD*CD=AB^2+BD*CD