∵f(log2a)=(log2[a])^2-log2[a]+b=b
a不等于1
∴log2[a]=1 a=2
∵log2[f(a)]=2
∴f(a)=f(2)=4
∵f(2)=2^2-2+b=4
∴b=2
f(log2x)=[log2x-1/2]^2+7/4
故当log2x=1/2时,f(log2x)min=7/4
此时x=2^(1/2)=√2
∵f(log2a)=(log2[a])^2-log2[a]+b=b
a不等于1
∴log2[a]=1 a=2
∵log2[f(a)]=2
∴f(a)=f(2)=4
∵f(2)=2^2-2+b=4
∴b=2
f(log2x)=[log2x-1/2]^2+7/4
故当log2x=1/2时,f(log2x)min=7/4
此时x=2^(1/2)=√2