解题思路:根据AC∥DE,证得∠ACD=∠D,∠BCA=∠E,通过等量代换可知∠B=∠D,再根据AC=CE,可证△ABC≌△CDE,所以BC=DE.
证明:∵AC∥DE,
∴∠ACD=∠D,∠BCA=∠E.
又∵∠ACD=∠B,
∴∠B=∠D.
在△ABC和△CDE中,
∠B=∠D
∠BCA=∠E
AC=CE
∴△ABC≌△CDE(AAS).
∴BC=DE.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.