(1)证明:∵弦CD⊥AB于点E,
∴∠CEP=90°.
∵∠POC=∠PCE,∠P=∠P,
∴△POC∽△PCE,
∴∠PCO=∠CEP=90°.
∴PC是⊙O的切线.
(2)∵OE:EA=1:2,
∴OE:OC=[1/3],OC:OP=[1/3].
∵PA=6,
∴⊙O的半径=3.
(3)连接BC;
∵圆的半径为3,OE:EA=1:2,
∴OE=1,
∴EC=2
2,BE=4;
∴BC=2
6.
∵∠PCA=∠B,
∴sin∠B=sin∠PCA=
2
2
2
6=
3
3.
(1)证明:∵弦CD⊥AB于点E,
∴∠CEP=90°.
∵∠POC=∠PCE,∠P=∠P,
∴△POC∽△PCE,
∴∠PCO=∠CEP=90°.
∴PC是⊙O的切线.
(2)∵OE:EA=1:2,
∴OE:OC=[1/3],OC:OP=[1/3].
∵PA=6,
∴⊙O的半径=3.
(3)连接BC;
∵圆的半径为3,OE:EA=1:2,
∴OE=1,
∴EC=2
2,BE=4;
∴BC=2
6.
∵∠PCA=∠B,
∴sin∠B=sin∠PCA=
2
2
2
6=
3
3.