解题思路:先根据△ABC是直角三角形求出AC的长,再根据△ACD各边的长判断出△ACD是直角三角形,
再利用S四边形ABCD=S△ABC=S△ACD解答.
∵△ABC中,∠B=90°,AB=16cm,BC=12cm,
∴AC=
AB2+BC2=
162+122=20cm,
∵△ACD中,AD=21cm,CD=29cm,AC=20cm,212+202=841=292,
∴△ACD是直角三角形,
∴S四边形ABCD=S△ABC+S△ACD
=[1/2]AB•BC+[1/2]AD•AC
=[1/2]×16×12+[1/2]×21×20
=306cm2.
点评:
本题考点: 勾股定理的逆定理;勾股定理.
考点点评: 本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,熟练掌握以上知识点是解答此题的关键.