给你两种证法:
1.用排序不等式:
1+x+x^2+...+x^2n
=x^0*x^0+x^(1/2)*x^(1/2)+x^1*x^1+...x^(n-2/2)*x(n-2/2)+x^(n-1/2)*x^(n-1/2)+x^n*x^n(顺序和)
≥x^0*x^n+x^(1/2)*(x^(n-1/2)+x^1*x^(n-2/2)+...+x^(n-1/2)*x^(1/2)+x^n*x^0(乱序和)
=x^n+x^n+x^n+...+x^n
=(2n+1)x^n
等号成立当且仅当x=1
2.用基本不等式,算术平均≥几何平均
1+x+x^2+...+x^n
≥(2n+1)(1*x*x^2*..*x^2n)(1/(2n+1))
=(2n+1)(x^(2n+1)*n)^(1/(2n+1))
=(2n+1)x^n
等号成立当且仅当x=1