锐角三角形ABC中,bcosC=3,csinB=4,a=7,则sinA=?

5个回答

  • 由正弦定理,有:b/sinB=c/sinC,得:bsinC=csinB=4,又bcosC=3,

    ∴(bsinC)^2+(bcosC)^2=25,∴b=5.

    ∴5sinC=4,∴sinC=4/5,

    ∵5cosC=3,∴cosC=3/5.

    再由正弦定理,有:a/sinA=b/sinB,∴asinB=bsinA,∴7sin(180°-A-C)=5sinA,

    ∴7sin(A+C)=5sinA,∴7sinAcosC+7cosAsinC=5sinA,

    ∴(21/5)sinA+(28/5)cosA=5sinA,∴28cosA=4sinA,∴7cosA=sinA,

    ∴49[1-(sinA)^2]=(sinA)^2,∴49=50(sinA)^2,∴sinA=7√2/10.