∵y=x 2-2x+2,∴y′=2x-2,∴tanα=2×2-2=2,
又∵y=x 3-3x 2+
1
2 x+5,∴y′=3x 2-6x+
1
2 ,∴tanβ=3×2 2-6×2+
1
2 =
1
2 ,
∴tanαtanβ=1,即tanβ=cotα,由0<α、β<
π
2 得β=
π
2 -α,
∴α+β=<
π
2 ,tan
α+β
2 =1且sin
α+β
3 =sin
π
3 =
1
2 .
∵y=x 2-2x+2,∴y′=2x-2,∴tanα=2×2-2=2,
又∵y=x 3-3x 2+
1
2 x+5,∴y′=3x 2-6x+
1
2 ,∴tanβ=3×2 2-6×2+
1
2 =
1
2 ,
∴tanαtanβ=1,即tanβ=cotα,由0<α、β<
π
2 得β=
π
2 -α,
∴α+β=<
π
2 ,tan
α+β
2 =1且sin
α+β
3 =sin
π
3 =
1
2 .