轴对称
1.二次函数图像是轴对称图形.对称轴为直线x = h 或者x=-b/2a
对称轴与二次函数图像唯一的交点为二次函数图像的顶点P.
特别地,当h=0时,二次函数图像的对称轴是y轴(即直线x=0)
a,b同号,对称轴在y轴左侧
b=0,对称轴是y轴
a,b异号,对称轴在y轴右侧
顶点
2.二次函数图像有一个顶点P,坐标为P ( h,k )
当h=0时,P在y轴上;当k=0时,P在x轴上.
h=-b/2a k=(4ac-b^2;)/4a
开口
3.二次项系数a决定二次函数图像的开口方向和大小.
当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口.
|a|越大,则二次函数图像的开口越小.
决定对称轴位置的因素
4.一次项系数b和二次项系数a共同决定对称轴的位置.
当a与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时
(即ab< 0 ),对称轴在y轴右.
事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的
斜率k的值.可通过对二次函数求导得到.
决定二次函数图像与y轴交点的因素
5.常数项c决定二次函数图像与y轴交点.
二次函数图像与y轴交于(0,C)
注意:顶点坐标为(h,k) 与y轴交于(0,C)
二次函数图像与x轴交点个数
6.二次函数图像与x轴交点个数
a0或a>0;k0 且X≥(X1+X2)/2时,Y随X的增大而增大,当a>0且X≤(X1+X2)/2时Y随X
的增大而减小
此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连
用).
交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式.两交点X值就是相应X1 X2值.