(3),设PQ与DC相交于点G,
∵PE∥CQ,PD=DE,
∴ = =
,
∴G是DC上一定点,
作QH⊥BC,交BC的延长线于H,
同理可证∠ADP=∠QCH,
∴Rt△ADP∽Rt△HCQ,
即 =
= ,
∴CH=2,
∴BH=BG+CH=3+2=5,
∴当PQ⊥AB时,PQ的长最小,即为5.
(4)设PQ与AB相交于点G,
∵PE∥BQ,AE=nPA,
∴ =
,
∴G是DC上一定点,
作QH∥PE,交CB的延长线于H,过点C作CK⊥CD,交QH的延长线于K,
∵AD∥BC,AB⊥BC,
∴∠D=∠QHC,∠DAP+∠PAG=∠QBH+∠QBG=90°,∠PAG=∠QBG,
∴∠QBH=∠PAD,
∴△ADP∽△BHQ,
∴
,
∵AD=1,
∴BH=n+1,
∴CH=BH+BC=3+n+1=n+4,
过点D作DM⊥BC于M,
则四边形ABND是矩形,
∴BM=AD=1,DM=AB=2
∴CM=BC-BM=3-1=2=DM,
∴∠DCM=45°,
∴∠KCH=45°,
∴CK=CH•cos45°=
(n+4),
∴当PQ⊥CD时,PQ的长最小,最小值为 (n+4).
很高兴为您解答,祝你学习进步!
【梦华幻斗】团队为您答题.有不明白的可以追问!
如果您认可我的回答.请点击下面的【选为满意回答】按钮,同时可以【赞同】一下,谢谢!