解题思路:根据已知的平行四边形的性质和等边对等角的性质,结合已知条件,可以证明△ADE≌△CBF,根据全等三角形的性质,可以证明四边形AFCE的两组对边分别平行,则可证明该四边形是平行四边形.
证明:∵AE=AD,CF=CB,
∴∠E=∠ADE,∠CBF=∠F.
在▱ABCD中,∠ADC=∠ABC,
∴∠ADE=∠CBF.
∴∠E=∠F.
在▱ABCD中,CD∥AB,
∴∠E+∠EAF=180°,
∴∠F+∠EAF=180°.
∴AE∥CF.
又∵CE∥AF,
∴四边形AFCE是平行四边形.
点评:
本题考点: 平行四边形的判定与性质.
考点点评: 此题综合运用了平行四边形的性质和判定,全等三角形的性质和判定.