(2011•江苏模拟)已知函数f(x)=x2-1,g(x)=a|x-1|.

1个回答

  • 解题思路:(1)关于x的方程|f(x)|=g(x)只有一个实数解,可转化为|x-1|(|x+1|-a)=0只有一个解,进而转化为|x+1|=a,有且仅有一个等于1的解或无解,进行判断得出参数范围即可.

    (2)根据自变量的取值范围进行分类讨论求参数的范围即可,此分类讨论是根据自变量进行分类的,故求得的参数范围必须求交集教参能满足恒成立.

    (3)将所给的函数写成分段函数的形式,在每一段上对函数的最值进行讨论,求出最大值,再比较两段上的最值得到函数的最大值,由于参数的影响,函数的单调性不确定,故可以根据需要分成三段进行讨论

    (1)方程|f(x)|=g(x),即|x2-1|=a|x-1|,变形得|x-1|(|x+1|-a)=0,显然,x=1已是该方程的根,从而欲原方程只有一解,即要求方程|x+1|=a,有且仅有一个等于1的解或无解,由此得a<0.(2)不等式f(x)≥g(x...

    点评:

    本题考点: 函数的零点与方程根的关系;函数最值的应用.

    考点点评: 本题考查函数的零点与方程的根的关系,解题的关键是根据所给的条件及相关知识对问题进行正确转化,本题比较抽象,对问题的转化尤其显得重要,本题在求解问题时用到了分类讨论的思想,转化化归的思想,数学综合题的求解过程中,常到到这两个思想.