(a-1)+(a^2-2)+.+(a^n-n)
=(a+a^2.+a^n)-(1+2+.n)
=[a(1-a^n)/(1-a)]-[(1+n)n/2]
(2-3*5^(-1))+(4-3*5^(-2))+...(2n-3*5^(-n))
=2+4+...+2n-[(3*5^(-1)+(3*5^(-2)+...(3*5^(-n)]
=(1+n)n-[3/5((1-(1/5)^n)/1-1/5]
s1=1+2x+3x^2+...nx^(n-1)
s1*x=1x+2x^2+3x^3+nx^n
s1-s1x=(1+2x+3x^2+...nx^(n-1))-(1x+2x^2+3x^3+nx^n)
=1+x+x^2+x^3+...x^(n-1)-nx^n