因为f(x)=ln[x+(x^2+1)^(1/2)]
所以f(-x)=ln[-x+(x^2+1)^(1/2)]
所以f(x)+f(-x)=ln[x+(x^2+1)^(1/2)]+ln[-x+(x^2+1)^(1/2)]
=ln{[x+(x^2+1)^(1/2)]*[-x+(x^2+1)^(1/2)]}
=ln[(x^2+1)-x^2]
=ln1=0
所以-f(x)=f(-x)
所以函数f(x)=ln[x+(x^2+1)^(1/2)]为奇函数
因为f(x)=ln[x+(x^2+1)^(1/2)]
所以f(-x)=ln[-x+(x^2+1)^(1/2)]
所以f(x)+f(-x)=ln[x+(x^2+1)^(1/2)]+ln[-x+(x^2+1)^(1/2)]
=ln{[x+(x^2+1)^(1/2)]*[-x+(x^2+1)^(1/2)]}
=ln[(x^2+1)-x^2]
=ln1=0
所以-f(x)=f(-x)
所以函数f(x)=ln[x+(x^2+1)^(1/2)]为奇函数