已知等差数列{an},a1+a3+a5=42,a4+a6+a8=69;等比数列{bn},b1=2,log2(b1b2b3

1个回答

  • 解题思路:(Ⅰ)设等差数列{an}的公差为d,由等差数列的性质及已知可分别求得a3=14,a6=23,进而可求d,由通项公式可得an;设等比数列{bn}的公比为q,由log2(b1b2b3)=6,得b1b2b3=26,由等比数列的性质可得b2=4,则q=

    b

    2

    b

    1

    4

    2

    =2,由通项公式可得bn

    (Ⅱ)易求cn=an-bn=(3n+5)-2n,由cn+1-cn=[3(n+1)+5]-2n+1-(3n+5)+2n=3-2n的符号可判断{cn}的前4项为正,从第5项开始往后各项为负,设数列{cn}的前n项和为Sn,利用等差、等比数列的求和公式可求Sn=(a1-b1)+(a2-b2)+…+(an-bn)=(a1+a2+…+an)-(b1+b2+…+bn),然后分n≤4,n≥5两种情况讨论可求Tn

    (Ⅰ)设等差数列{an}的公差为d,

    ∵a1+a3+a5=3a3=42,∴a3=14,

    a4+a6+a8=3a6=69,∴a6=23,

    ∴d=[23-14/3]=3.

    an=a3+(n-3)d=14+(n-3)•3=3n+5.

    设等比数列{bn}的公比为q,

    由log2(b1b2b3)=6,得b1b2b3=26,即b23=26,∴b2=4,

    则q=

    b2

    b1=

    4

    2=2,

    ∴bn=2•2n-1=2n.

    (Ⅱ)cn=an-bn=(3n+5)-2n

    cn+1-cn=[3(n+1)+5]-2n+1-(3n+5)+2n=3-2n

    当n=1时,c2-c1=1>0,c2>c1

    当n≥2时,3-2n<0,cn+1n,
    又c1=6,c2=7,c3=6,c4=1,c5=-12,…
    ∴{cn}的前4项为正,从第5项开始往后各项为负,
    设数列{cn}的前n项和为Sn,Sn=(a1-b1)+(a2-b2)+…+(an-bn
    =(a1+a2+…+an)-(b1+b2+…+bn
    =
    n(3n+13)
    2-
    2(1-2n)
    1-2=
    3n2+13n
    2-(2n+1-2),
    ∴当n≤4时,Tn=|c1|+|c2|+…+|cn|
    =c1+c2+…+cn=Sn=
    3n2+13n
    2-2n+1+2;
    当n≥5时,Tn=c1+c2+c3+c4-(c5+c6+…+cn
    =S4-(Sn-S4)=2S4-Sn
    =40-(
    3n2+13n
    2-2n+1+2)=38-
    3n2+13n
    2+2n+1.
    ∴Tn=


    3n2+13n
    2-2n+1+2,n≤4
    38-
    3n2+13n
    2+2n+1,n≥5.

    点评:

    本题考点: 数列的求和.

    考点点评: 本题考查等差、等比数列的通项公式、求和公式,考查分类讨论思想,考查学生的运算求解能力,属中档题.