解题思路:(Ⅰ)设等差数列{an}的公差为d,由等差数列的性质及已知可分别求得a3=14,a6=23,进而可求d,由通项公式可得an;设等比数列{bn}的公比为q,由log2(b1b2b3)=6,得b1b2b3=26,由等比数列的性质可得b2=4,则q=
b
2
b
1
=
4
2
=2,由通项公式可得bn;
(Ⅱ)易求cn=an-bn=(3n+5)-2n,由cn+1-cn=[3(n+1)+5]-2n+1-(3n+5)+2n=3-2n的符号可判断{cn}的前4项为正,从第5项开始往后各项为负,设数列{cn}的前n项和为Sn,利用等差、等比数列的求和公式可求Sn=(a1-b1)+(a2-b2)+…+(an-bn)=(a1+a2+…+an)-(b1+b2+…+bn),然后分n≤4,n≥5两种情况讨论可求Tn.
(Ⅰ)设等差数列{an}的公差为d,
∵a1+a3+a5=3a3=42,∴a3=14,
a4+a6+a8=3a6=69,∴a6=23,
∴d=[23-14/3]=3.
an=a3+(n-3)d=14+(n-3)•3=3n+5.
设等比数列{bn}的公比为q,
由log2(b1b2b3)=6,得b1b2b3=26,即b23=26,∴b2=4,
则q=
b2
b1=
4
2=2,
∴bn=2•2n-1=2n.
(Ⅱ)cn=an-bn=(3n+5)-2n,
cn+1-cn=[3(n+1)+5]-2n+1-(3n+5)+2n=3-2n,
当n=1时,c2-c1=1>0,c2>c1,
当n≥2时,3-2n<0,cn+1
又c1=6,c2=7,c3=6,c4=1,c5=-12,…
∴{cn}的前4项为正,从第5项开始往后各项为负,
设数列{cn}的前n项和为Sn,Sn=(a1-b1)+(a2-b2)+…+(an-bn)
=(a1+a2+…+an)-(b1+b2+…+bn)
=
n(3n+13)
2-
2(1-2n)
1-2=
3n2+13n
2-(2n+1-2),
∴当n≤4时,Tn=|c1|+|c2|+…+|cn|
=c1+c2+…+cn=Sn=
3n2+13n
2-2n+1+2;
当n≥5时,Tn=c1+c2+c3+c4-(c5+c6+…+cn)
=S4-(Sn-S4)=2S4-Sn
=40-(
3n2+13n
2-2n+1+2)=38-
3n2+13n
2+2n+1.
∴Tn=
3n2+13n
2-2n+1+2,n≤4
38-
3n2+13n
2+2n+1,n≥5.
点评:
本题考点: 数列的求和.
考点点评: 本题考查等差、等比数列的通项公式、求和公式,考查分类讨论思想,考查学生的运算求解能力,属中档题.