(x+2)(x-3)^3+(x+3)^3+1=0
(x+2)(x-3)^3+((x+3)-1)((x+3)^2+(x+3)+1)=0
(x+2)(x^3-8x^2+34x-14)=0
显然有一根x=-2 .
令y=x^3-8x^2+34x-14
y'=3x^2-16x+34>0,故为增函数,有两虚根,一实根.取初始区间(1/3,1/2)由二分法得一实根在(11/24,23/48).
(x+2)(x-3)^3+(x+3)^3+1=0
(x+2)(x-3)^3+((x+3)-1)((x+3)^2+(x+3)+1)=0
(x+2)(x^3-8x^2+34x-14)=0
显然有一根x=-2 .
令y=x^3-8x^2+34x-14
y'=3x^2-16x+34>0,故为增函数,有两虚根,一实根.取初始区间(1/3,1/2)由二分法得一实根在(11/24,23/48).