f'(x)=-2cosx*sinx+2acosx
令f'(x)=0
即sinx=a
则当sinx=a时,f(x)取极值
又a>1,-1≤sinx≤1
故sinx最大取1
f(x)=1-a^2+2*a*a-1
=a^2
=1
像你所说,若sinx=-1时,即a=-1,不满足a>1的条件
f'(x)=-2cosx*sinx+2acosx
令f'(x)=0
即sinx=a
则当sinx=a时,f(x)取极值
又a>1,-1≤sinx≤1
故sinx最大取1
f(x)=1-a^2+2*a*a-1
=a^2
=1
像你所说,若sinx=-1时,即a=-1,不满足a>1的条件