数列{a n }是公差不为0的等差数列,且a 6 ,a 9 ,a 15 依次为等比数列{b n }的连续三项,若数列{b

1个回答

  • 由a 6,a 9,a 15依次为等比数列得到a 9 2=a 6a 15即(a 1+8d) 2=(a 1+5d)(a 1+14d),

    化简得3d(a 1+2d)=0,由d≠0,得到a 1=-2d,

    所以数列{b n}的公比q=

    a 9

    a 6 =

    -2d+8d

    -2d+5d =2,首项b 1=

    1

    2 ,

    则S 5=

    1

    2 (1- 2 5 )

    1-2 =

    31

    2

    故答案为:

    31

    2