1*2+2*3+...+n*(n+1)
=1^+1+2^+2+…+n^+n
=1+2+…n+1^+2^+…+n^
=n(n+1)/2+n(n+1)(2n+1)/6
=n^3/3+n^+2n/3
lim{[1*2+2*3+...+n*(n+1)]/n^3}
=lim[(n^3/3+n^+2n/3)/n^3]
=1/3
1*2+2*3+...+n*(n+1)
=1^+1+2^+2+…+n^+n
=1+2+…n+1^+2^+…+n^
=n(n+1)/2+n(n+1)(2n+1)/6
=n^3/3+n^+2n/3
lim{[1*2+2*3+...+n*(n+1)]/n^3}
=lim[(n^3/3+n^+2n/3)/n^3]
=1/3