^2+c^2-a^2=b^2+c^2-(b+c)^2=-2bc ,那么c^2+a^2-b^2=-2ac
a^2+b^2-c^2=-2ab
1/(b^2+c^2-a^2)+1/(c^2+a^2-b^2)+1/(a^2+b^2-c^2)
=1/(-2bc)+1/(-2ac)+1/(-2ab)
=(a+b+c)/(-2abc)=0
2.假设n为正整数,求证1/(1*3)+1/(3*5)+……+1/((2n+1)(2n-1))< 1/2
1/(1*3)+1/(3*5)+……+1/((2n+1)(2n-1))
={(1-1/3)+(1/3-1/5)+.(1/(2n-1)-1/(2n+1))}/2
={1-1/(2n+1)}/2 < 1/2 OK了,给分.