cos角度=向量相乘除以这两个向量模的乘积
如何求2个3维向量Z1(x1,y1,z1)和Z2(x2,y2,z2)的夹角?
1个回答
相关问题
-
-(x-y+z)-2(x-y+z)-3(x-y+z),其中x-=1,y=1/2,z=-2
-
化简求值(2x-y+3z)(-2y-y-3z)-(x+2y-3z)^2,其中X=1,y=-1,z=1
-
若x+y+z=2,x^2+y^2+z^2=2,1/x+1/y+1/z=1/3则 x^3+y^3+z^3=
-
三元一次方程题{x-2y+z=-1 (1){x+y+z=2 (2){x+2y+3z=-1 (3){2x+y-z=2 (1
-
1.x+y+z=21,x-y=1,2x+z-y=13.2.3x+2y+z=13,x+y+2z=7 ,2z+3y-z=12
-
x+y-z=6(1) x-3y+2z=1(2) 3x+2y-z=4(3) 求X Y Z 的值
-
x,y,z∈R且x+y+z=1,x^2+y^2+z^2=1,x>y>z,求证:-1/3
-
2x-2y+z=0 2x+y-z=1 x+3y-2z=1
-
x=2z²/(1+z²),y =2x²/(1+x²),z =2y²/(
-
1/x+2/y+3/z=5,3/x+2/y+1/z=7,求1/x+1/y+1/z