一道高数导数题

1个回答

  • 因为:

    [x+√(1+x^2)]^(1/3)*[x-√(1+x^2)]^(1/3)=-1

    所以:

    [x-√(1+x^2)]^(1/3)=-1/[x+√(1+x^2)]^(1/3)

    则有:

    y=[x+√(1+x^2)]^(1/3)-1/[x+√(1+x^2)]^(1/3)

    所以重点是求出[x+√(1+x^2)]^(1/3)的导数.

    y'

    =(1/3)[x+√(1+x^2)]^(-2/3)*[x+√(1+x^2)]'+(1/3)[x+√(1+x^2)]^(-2/3)*[x+√(1+x^2)]'/[x+√(1+x^2)]^(2/3)

    =(1/3)[x+√(1+x^2)]^(-2/3)*[1+(1/2)*(2x)/√(1+x^2)]+(1/3)[x+√(1+x^2)]^(-2/3)*[1+(1/2)*(2x)/√(1+x^2)]/[x+√(1+x^2)]^(2/3)

    =(1/3)[x+√(1+x^2)]^(1/3)*(1+x^2)^(-1/2)+(1/3)[x+√(1+x^2)]^(1/3)*(1+x^2)^(-1/2)/[x+√(1+x^2)]^(2/3)

    =(1/3)[x+√(1+x^2)]^(1/3)*(1+x^2)^(-1/2)+(1/3)[x+√(1+x^2)]^(-1/3)*(1+x^2)^(-1/2)

    =(1/3)*(1+x^2)^(-1/2){[x+√(1+x^2)]^(1/3)+[x+√(1+x^2)]^(-1/3)}

    y'(2)=(1/3)*(1+4)^(-1/2){(2+√5)^(1/3)+(2+√5)^(-1/3)}