设过焦点的边倾斜角为x,设这条边为AB.不妨设x≤90°
由椭圆焦点弦公式有:
AB=2ab²/(a²-c²cosx)=12/(4-cosx)
而另一个焦点在AB上的高为2c·sinx=2sinx
所以平行四边形面积为24sinx/(4-cosx)
求导,得cosx(4-cosx)-sin²x=0
即4cosx=1,
所以平行四边形面积的最大值为
8√15/5(8倍5分之根号15)
即为所求
设过焦点的边倾斜角为x,设这条边为AB.不妨设x≤90°
由椭圆焦点弦公式有:
AB=2ab²/(a²-c²cosx)=12/(4-cosx)
而另一个焦点在AB上的高为2c·sinx=2sinx
所以平行四边形面积为24sinx/(4-cosx)
求导,得cosx(4-cosx)-sin²x=0
即4cosx=1,
所以平行四边形面积的最大值为
8√15/5(8倍5分之根号15)
即为所求