问题在哪啊...
1*2+3*5+5*8+...+(2N-1)(3N-1)
1个回答
相关问题
-
求证:1*2+2*5+3*8+…+n(3n-1)=n^2(n+1)
-
化简1/(2*5)+1/(5*8)+1/(8*11)+…+1/[(3n-1)*(3n+2)]=
-
1+3+5+.+(2n-5)+(2n-3)+(2n-1)+(2n+1)+(2n+3)
-
已知1*1+2*2+3*3+……+n*n=1/6n(n+1)(2n+1),求1*2+3*4+5*6+7*8+.+49*5
-
做个题lim[1/2×5 +1/5×8+1/8×11.+1/(3n-1)(3n+2) n→∞
-
1/1*3+1/3*5+1/5*7+.+1/(2n-1)(2n+1)=n/(2n+1)
-
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n
-
求和:1/2+3/4+5/8+...+(2n-1)/2^n
-
求下列数列的极限:lim(n→∞) [1/(2*5)+1/(5*8)+1/(8*11)+……+1/(3n-1)*(3n+
-
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3