设k=ax^3=by^3=cz^3
则 ax^2/k=1/x,by^2/k=1/y,cz^2/k=1/z
1/x+1/y+1/z=1
即:ax^2+by^2+cz^2=k=ax^3=by^3=cz^3
(ax^2+by^2+cz^2)^(1/3)=k^(1/3)=x*a^(1/3)=y*b^(1/3)=z*c^(1/3)
a^(1/3)+b^(1/3)+c^(1/3)=k^(1/3)*(1/x+1/y+1/z)
=k^(1/3)
所以:(ax^2+by^2+cz^2)^(1/3)=a^(1/3)+b^(1/3)+c^(1/3)