f(x)=ln[√(1+x²)-x]
定义域是√(1+x²)-x>0
√(1+x²)>x
是恒成立 ,也就是说定义域是R
∵f(-x)
=ln{√[1+(-x)²]-(-x)}
=ln{[√(1+x²)]+x}
=ln{[(1+x²)-x²]/[√(1+x²)-x]}
=ln{1/[√(1+x²)-x]}
=ln{[√(1+x²)-x]^(-1)}
=-ln[√(1+x²)-x]
=-f(x)
所以f(x)是奇函数
谢谢
f(x)=ln[√(1+x²)-x]
定义域是√(1+x²)-x>0
√(1+x²)>x
是恒成立 ,也就是说定义域是R
∵f(-x)
=ln{√[1+(-x)²]-(-x)}
=ln{[√(1+x²)]+x}
=ln{[(1+x²)-x²]/[√(1+x²)-x]}
=ln{1/[√(1+x²)-x]}
=ln{[√(1+x²)-x]^(-1)}
=-ln[√(1+x²)-x]
=-f(x)
所以f(x)是奇函数
谢谢